
JUUSO GRÉN, KIMMO KONKARIKOSKI, RISTO RITALA 
 
 

Tampere University of Technology 
Measurement and Information Technology, Finland 

e-mail: kimmo.konkarikoski@tut.fi 
 
 
OPTIMAL MEASUREMENT POLICY FOR DECISION MAKING: A CASE STUDY OF 

QUALITY MANAGEMENT BASED ON LABORATORY MEASUREMENTS 
 
 

Measurement information generates value, when it is applied in the decision making. An investment cost and 
maintenance costs are associated with each component of the measurement system. Clearly, there is – under a 
given set of scenarios – a measurement setup that is optimal in expected (discounted) utility. Contrary to process 
design, design of measurement and information systems has not been formulated as such an optimization 
problem, but has rather been tackled intuitively. In this presentation we propose a framework for analyzing such 
an optimization problem. Our framework is based on that the basic mechanism of measurement is reduction of 
uncertainty about reality. Statistical decision theory serves as the basis for analyzing decision making. In this 
article we apply the framework to a problem that is rather simple but of practical importance: how to arrange 
laboratory quality measurements optimally. In particular, we discuss a case in the paper making industry, in 
which the product quality is measured with automated quality analyzers and by laboratory measurements. 
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1.  INTRODUCTION 
 

The process industries make use of hundreds of on-line and laboratory measurements to 
monitor and control the process [1]. Information systems are designed with the aim of 
supporting the daily decision making about process and product quality by operators and 
engineers so that the best practice of operation can be achieved continuously. Measurements, 
soft sensors and process simulators form the basis for such decision support by reducing the 
uncertainty about the present state of the process and about its future evolution.  

Information derived from the process is used in many ways, but it is poorly known how 
and if the operators exploit all the information available. This may lead to a situation where 
some measurements are carried out without purpose, only by habit. However, if end user 
information requirements and constraints on uncertainty of the measurements are made 
explicit, the optimal arrangement of the measurements can be determined. [2] 

When making decisions or when combining information from various sources, the 
uncertainty of information is decisive and must thus be known. Ideally measurements, soft 
sensors and simulators for estimation and forecasting should produce as their information 
output the probability density function of the state of the process and of its predicted 
evolution, respectively. In present information systems such uncertainties of estimates and 
forecasts are not recorded, and rather often the uncertainty analysis has been neglected 
altogether. 

Information from measurements, soft sensors and simulators generates value through 
improved decisions [3], because the uncertainty about the present and/or future state of the 
process has been reduced. The amount of value generated depends on the goal set by the 
decision maker, including the decision maker’s attitude towards risk. Process operators and 
engineers are rather unfamiliar with the concept of uncertainty and hence uncertainty of 
consequences is dealt with rather implicitly when making decisions [4]. 

The optimal measurement system is such that it maximizes the value of information 
generated, under a given set of scenarios on external effects to the process. Optimal process 



design is well known [5], but the optimal design of information systems – measurements, 
actuators, control algorithms and data analysis methods – has emerged only recently [6-8].  

The goal of this study is to keep uncertainty of state information below a pre-specified 
level while minimizing the costs of measurements. In this article, we expect the allowable 
level of uncertainty given, e.g. by analyzing the system decision tasks and performance 
requirements. This article tackles the optimal measurement policy problem with Bayesian 
approach and two case examples (passive and active) are presented. In the passive case a 
fixed set of quality measurements are always made and an output model gives the estimated 
values for the other quality parameters of interest. In the active case the monitoring of the 
estimated quality parameters determines dynamically when and which quality measurements 
of the measured set are to be made.  

This article is organized as follows. In Section 2 we discuss statistical decision theory 
briefly as it is the framework within which we analyze value that information generates. 
Furthermore, we discuss the generic problem of measurement setup and propose that the 
relationship to optimal decision making is via specifying, how accurately the process state - in 
our case product quality - must be known. Section 3 discusses a practical way of designing 
the measurement setup and how that relates to optimal estimation in linear/Gaussian case. In 
Section 4 we formulate a case of papermaking in which the task is to find an optimal 
laboratory measurement scheme to support quality management and discuss this case with 
real-life data. Both the active and passive approaches are presented. In Section 5 we discuss 
how our results can be generalized to other cases in process industries. This section also 
explores the possibilities of future research. 
 
 

2.  STATISTICAL DECISION THEORY 
 
Decisions are based on available information about the target system – current 

measurements, a priori information in the form of models and tacit knowledge. Decision 
making can be described as an optimization task, either a deterministic, stochastic, multigoal 
or game problem.  

The formal statistical decision making problem consists of the following elements: a priori 
information about the state of the system, models of measurements, model for predicting the 
consequences of decision alternatives, and the expectation value of utility of the 
consequences. To define these elements, the system state (x), the set of consequences (c) and 
the set of allowable decisions (actions, a) must be described. Note that x, c and a are 
multidimensional and that they may be past time series (x) or future time series (c, a). Figure 
1 presents the decision making task: given the measurement value x(obs) and the probabilistic 
models, what is the action that yields maximal expected utility for the decision maker (DM) 
[9, 10]. 
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Fig. 1. Action - consequence scheme of system. 



Decision maker knows the state of the system, x, only probabilistically through uncertain 
measurements and possibly through a priori information. The consequence c of the action a, 
given that system state is x, is known probabilistically as a priori information. DM evaluates 
the system performance in terms of consequences. The utilities of consequences c, if the 
consequence were certain, are given as u(c) [11]. Then the best action a* is the one with 
highest expected utility. The utility is a description of both DM’s preference order and 
attitude towards risk. If utility exists, DM is guaranteed rational in the sense that he does not 
have circular preferences in pairwise comparisons of decision alternatives. 

Formally, the elements of a priori information, measurement models and prediction models 
are then, respectively, the probability density functions: 
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Here x(obs) refers to the measured value of x. The probability density function of 

consequence c, given that x(obs) has been measured and DM would decide a is then according 
to Bayes formula [12, 13]: 
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where N is a normalization factor and n is the dimensionality of system state space 
description. 

Defining the objective of decision making, and in particular the attitude towards risk, is 
quite often the main challenge when applying the formal decision theory to operational 
decision making about production, e.g. in papermaking and in other industrial processes. 
Although the utility function exists for a rational decision maker, its most general 
identification method through finding certainty equivalents of “gambling cases” [11] is 
tedious and often not intuitive for the decision maker. We shall employ the utility function as 
a normative decision model and assume that DM is able to express it notwithstanding that it 
has been criticized for not corresponding to human decision making in all respects [10, 14]. 

The optimal decision is then the one that maximizes the expected utility, and the 
corresponding expected utility is the measure of performance [8-10, 15]: 
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The properties of measurement system affect the optimal expected utility U*(x(obs)) through 

how accurately the state is known on the basis of measurement value x(obs). Assuming that 
there is no measurement bias, the properties of measurement system can be predominantly 
characterized by Cxx, the covariance matrix of measurement uncertainties. Hence we may 
write U*(x(obs), Cxx). 



In order to achieve an accuracy Cxx a (life-time, discounted) cost c(Cxx) is caused. When 
designing a measurement setup, we assume that there will be a number of decision making 
situations, each with its specific action-consequence model and utility. A scenario occurs with 
frequency pi, and the corresponding optimal utility, if measurement x(obs) is made, is 
Ui*(x(obs)). Furthermore, for each scenario, we can assess the a priori probability density 
function of observing x(obs) to be fi(x(obs)). Then the design problem reduces into finding the 
optimal measurement accuracy maximizing the lifetime “profit”: 
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where T is the life time of the system and we have assumed that utility has been expressed in 
units comparable to those of costs. 

Here we have considered only the direct effect of measurement setup (and accuracy) on 
value generated. Quite often the prediction model (1c) is identified and updated on the basis 
of the very same measurements. The better the accuracy of measurements the more accurate 
are the models and the better optimal utility in (3) can be achieved. Similarly, the a priori 
information about system state is based on long term statistics of the same measurements: the 
more accurate the measurements, the more accurate the a priori information and the better the 
decisions. The accumulating nature of this accuracy leads to complex discounting questions. 
Hence, we choose to neglect these indirect effects throughout the rest of the paper and 
concentrate on the direct effect only. 

The measurement setup optimization described in (4) is extremely difficult to carry out in 
practice. We need to specify all decision making situations to arise during the lifetime of the 
system, their frequencies, and the utilities and prediction models associated with them. 
However, we should bear in mind that a similar analysis is the basis of optimal process design 
and should thus be the goal of optimal measurements system design as well. 
 
 

3.  MINIMUM-COST MEASUREMENT SETUP FOR SPECIFIED ACCURACY OF 
STATE INFORMATION 

 
The analysis above shows that optimizing the measurement setup is equivalent to finding 

the optimal measurement accuracy, as described by Cxx. If we cannot solve the formal 
optimization problem (4), we may first seek to find “largest acceptable uncertainty” in the 
information about the system state through process expertise and then analyze by which 
measurement setup the uncertainty will be below this at lowest cost. 

When estimating the system state the correlations between system state variables can be 
used to reduce the number of measurements to be made and hence to reduce measurement 
costs. The elements in the measurement setup analysis are depicted in Fig. 2.  
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Fig. 2. Measurement setup analysis scheme. 
 

Next we shall consider the following case 
- a priori information: system state is multivariate normally distributed, ),;(~ ΣµxNX n ; no 

other a priori information, 
- measurement description: all state variables can be measured, the measurements are 

unbiased and distributed according to ),;(~|)( CxxNxX obsn
obs ; the description of any 

subset of measurements is obtained by marginalizing the full distribution with respect to 
the measurements not made. 
Let us assume that we have analyzed the tasks that DM will be facing assisted with the 

measurement information system. With human experts we have concluded that the quality of 
decision making requires that at all instances the largest allowable uncertainty in state 
variable xi is σi

(c): 
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xx σσ<Σ , guaranteed by (5). In order to satisfy (5), we may choose to measure once 

or several times some of the quality parameters and to estimate the other on the basis of the 
measurements made and the a priori correlations between the quality parameters. Such a 
measurement will be referred to as “measurement decision”, and a sequence of measurement 
decisions a “measurement policy”. We consider policies in which the measurement decisions 
are made at regular intervals. In the present case the measurement decisions will be 
independent of the actual values of measurements. Assuming we know the cost associated 
with each measurement decision, we then may solve for optimal decision policy. 

When the a priori joint probability density function of system state is multivariate 
Gaussian, we know from optimal estimation theory [16] that dividing the quality parameters 
into two groups, x = [x1 x2] and measuring x1 with measurement errors having a multivariate 
normal joint probability density function X1

(obs) ~ Nd(x(1), C11), the estimates for x2 and the 
covariance matrix describing their uncertainties are given by 
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Here Σ11 is the submatrix of Σxx for variable set x1, and respectively for other Σij and µi. 

The diagonal elements of the covariance matrix of estimates, Σii
(post), give the left hand side 

of Eq. (5). Then we may proceed to solve for the lowest-cost laboratory setup satisfying the 
constraint of Eq. (5). If we repeat some of the measurements of x(1), this affects only the 
matrix C11 in the analysis above. Therefore measurement setups of repeats are also solved 
with the same approach, or formally: 
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with n the dimension of the state and ki of the repeats of measurement i. This solves for the 
static measurement decision: which measurements need to be made in order to confirm with 
the constraint of largest acceptable uncertainty about the state. 

Obviously, in real-life applications we cannot trust the joint probability density function of 
quality parameters to be Gaussian and methods of nonlinear estimation need to be applied. 
However, following the principle outlined above. 

The analysis above solved which measurements are to be made when only a priori 
information was the statistical dependence between the state variables. Therefore, it does not 
give us any information about how often the measurements are to be made. In process 
management, we have on the one hand the requirement that condition (5) must be satisfied at 
all times and on the other hand we have the additional a priori information from previous 
measurements and the state estimate based on those. The information based on earlier 
measurements degrades, and thus a need for new measurement arises once this information no 
longer satisfies the condition (5). 
The Equations (6) provide the uncertainty of the estimate immediately after the measurement 
is made. It is intuitively obvious that as time progresses and no new measurements are made, 
the estimate can still be considered as the estimate of the process state, but the uncertainty 
increases with time. The approach of the maximum entropy principle is to assume that the 
process state undergoes a Wiener process (random walk) so that the estimate uncertainty 
increases in time as [17-20]: 
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where tn is the instant when the nth measurement/estimation was made and Dii is the 
covariance parameter of the Wiener process of process state. 
 



With the assumption of Eq. (8), estimation method (e.g. Eq. (6)) and constraints, Eq. (5), 
we may formulate an optimization problem: which measurement we need to make and how 
often (interval [0, T], present time is 0) to keep the knowledge about the quality within the 
required accuracy (cf. Fig. 2): 
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Although defining the constraint for uncertainty (5) is extremely challenging for practical 

decision makers and the cost structure of making measurements may be much more 
complicated than each measurement having its cost independent from possible other 
measurements made at the same time, we claim the approach practical. We shall now proceed 
in applying the approach to the analysis of quality management and related laboratory 
activities at a paper mill.  

 
 

4.  QUALITY MANAGEMENT AT A PAPER MILL 
 
In process industries such as papermaking the quality management is commonly based on 

a three-level hierarchical measurement structure: accurate but costly and infrequent laboratory 
measurements, automated quality analyzers sampling more frequently and mimicking 
laboratory analyses, and indirect but frequent on-line measurements for automatic control. In 
paper mills, measuring frequency of analyzers is usually once per machine reel, or 1-3 times 
an hour, whereas laboratory analyses are made at most 3 times a day. These frequencies are to 
be compared with that paper web is produced at web speed of up to 30 m/s, or 50 tons/h. The 
decisions supported with this information can be divided into three categories: continuous 
process and quality management, special actions, and configuration of the measurement 
information system itself. 

At paper mills the active quality control is broke management and apportioning raw 
materials,. The most important special action in quality management is detecting off-
specification products to be rejected.  The validation and calibration of on-line quality sensors 
with other quality measurements is the main configuration decision. The accuracy constraints 
for quality information, Eq. (5), can be derived from analysis of these decisions: how data is 
actually used in each of the cases. There are only very few mills that have carried out such an 
analysis, and no mills that have applied decision analysis to specify how accurately the 
measured parameters must be known. 

As a particular case we consider the management of the key optical properties of paper: 
brightness, opacity and L-a-b color coordinates. The optical quality specifications of printing 
paper grades set by customers are tight as the visual appearance of printed products hinges on 
these quality parameters. The optical properties are well standardized and there exist 
laboratory devices of high accuracy to measure these parameters. However, such laboratory 
activities are labor intensive and also require investing in devices and systems. Laboratory 
measurements can never be made with a frequency to give a sufficient understanding of 
optical quality variations within a customer reel. These properties can be measured with 
automated quality analyzers that have investment costs of similar magnitude but the 



operational costs per sample are much lower. The practices of combining laboratory analyses 
and automated quality analyzers have been developed with time into their present form, and it 
may be questioned whether they are close to optimal. Should a green field production line be 
built, how should the laboratory activities be set up?  
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Fig. 3. Passive measurement policy. 
 
The optimal measurement setup of optical quality in paper is based on analysis of quality 

measurement data from a paper mill, over a six-month period from both an automated 
analyzer (27 quality measurements) and laboratory analysis (14 quality parameters). The 
analysis concentrated on one paper grade only. There are two cases discussed in this paper; 
passive (Fig. 3) and active (Fig. 4) case measurement policies. In the passive case the cost of 
availability and operation for laboratory analyzer is the same regardless of the amount of 
quality parameters measured. So, all 27 quality measurements are measured though only few 
of them would be needed. In the active case every quality measurement costs the same but 
they can be measured separately. Laboratory analysis is labor intensive and the cost of 
availability and operation varies between quality parameters. The target is to find out if 
laboratory analyses are needed at all, and if they are needed, how often they must be made to 
maintain the requested accuracy of optical quality information. 
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Fig. 4. Active measurement policy. 
 
Following linear optimal estimation we divide quality parameters into two groups x = [x1 

x2] and measuring x2 generates the estimates for x1. Every quality parameter in x1 has the 
largest allowable uncertainty (constraint of Eq. 5) and every quality parameter in x2 costs one 
unit if measured. In the passive case the cost is constant, 27 units, every time. 

The objective was to find correlating quality parameters between these two measurement 
methods – laboratory analysis and laboratory analyzer – and to find the group of quality 
parameters that can be estimated using measurement results from a laboratory analyzer only, 
thus reducing the laboratory work. After that, labor intensive laboratory analysis can be 
focused on those quality parameters that cannot be estimated using this model and are needed. 

Quality parameter data was divided into two parts; the first part (three months) was used as 
identification data for establishing the a priori model, and the second part (the next three 
months) as validation data. Identification data was used to generate models in form of 
covariance matrices and to find the optimal set of measurements. In the passive case all 27 of 
laboratory analyzer quality measurements were used in estimation, while in the active case the 
optimal set of measurements was defined for every quality parameter separately with stepwise 
analysis. The stepwise procedure was modified such that analysis was aborted when the R2-
value reached a value of 0.865. The temporal optimization is valid till the next measurement 
needs to be made and can thus be called a one-step-ahead procedure. The length of the step is 
determined by the uncertainty of the estimate, that is, the model needs to be dynamically 



validated via new laboratory analysis measurements when an uncertainty reaches the largest 
allowable uncertainty. Figure 5 shows measured and estimated values and errors between 
them for the quality parameter 1, using validation data set, that is, the measured value comes 
from laboratory analysis measurement and the estimated value is calculated with the model 
based on laboratory analyzer measurements. There is also a mean square error calculated for 
estimates. Figure 6 shows the very same information for the quality parameter 2. In the 
passive case estimations are estimated using all 27 of quality measurements, while in the 
active case only four measurements are used estimating the quality parameter 1 and five with 
the quality parameter 2. 

 
Fig. 5. Measured and estimated values (upper figure) and residuals as well as mean square error (lower figure) 

for quality parameter 1. 
 

 
Fig. 6. Measured and estimated values (upper figure) and residuals as well as mean square error (lower figure) 

for quality parameter 2. 
 

There is a covariance matrix of Wiener process, D in (Eq. 8), associated with quality 
information, so the estimate uncertainty increases in time. To maintain the uncertainty of 
quality information within an acceptable level, we choose D at its worst-case value, i.e. 
consider how quickly at most we may loose information about quality. A chosen set of the 



quality measurements is measured and the model is dynamically validated every time the 
uncertainty of an estimate increases over σi

(c). Figures 7 and 8 display the estimates and their 
uncertainties for a ten-day period for quality parameter 1 and 2, respectively. Solid black lines 
represent the estimate uncertainty with the worst-case D, grey lines the largest allowable 
uncertainty, circles represent measured and crosses estimated values and the black dotted line 
represents the target value. An apparent asymmetry in the estimate uncertainty occurs from 
variation of the estimate. The degraded laboratory information and the information based on 
analyzer results can be fused to reduce the number of laboratory analyses. 

 
Fig. 7. Estimated values (cross), measured values (circle), uncertainties (solid black lines) and goals (grey line 
for largest allowable uncertainty and dotted line for target value) for quality parameter 1 in the passive and the 

active case. 

 
Fig. 8. Estimated values (cross), measured values (circle), uncertainties (solid black lines) and goals (grey line 
for largest allowable uncertainty and dotted line for target value) for quality parameter 2 in the passive and the 

active case. 
 

The analysis of the validation shows in general that the predictive power of the laboratory 
analyzer, using the same covariance matrix Σ, has degraded substantially. Therefore, 
occasional laboratory measurements are needed to dynamically validate the covariance 
matrix. The frequency of needed laboratory measurement is, according to our analysis, much 
lower than current practice, as manifested in Fig. 9 which shows three measurement setups; 
current practice, passive case and active case. Vertical axes contain all the 14 quality 
measurements of laboratory analysis. With the validation data laboratory measurements were 
made 42 times in a three month period, which is represented on horizontal axes. In current 
practice every measurement was made every time, while in passive and active cases 
measurements were made only if the uncertainty of some estimation was too high. The 



passive and the active cases are optimal in the way to maintain the accuracy high enough for 
all 14 of quality parameters. In the figure a black cell represents the corresponding laboratory 
measurement being made at the corresponding instant. Current practice costs 588 units (black 
cells), while passive practice would reduce costs to 170 units and active practice to 165 units.  

The advantage of the active case compared to passive case appears in the dynamic 
validation of the a priori model (covariance matrix). As the uncertainty of the model increases 
too much for some quality parameter, the model has to be validated. In the passive case the 27 
laboratory analyzer measurements have to be used in validation while in the active case only 
needed measurements could be used, as shown in Figure 10. The figure is similar in notation 
to Fig. 9, but vertical axes contain all 27 of laboratory analyzer measurements. In current 
practice measurements were made constantly, whereas in the passive and active case they are 
made only if needed. As a black cell represents a measurement needed, it is obvious that it is 
possible to reduce the number of  measurements from the current practice in which costs are 
1134 units, while in  the passive case they are 837 units and in the active case only 334 units. 
In this case every quality parameter is considered separately which means that the model is 
validated for every quality parameter only when the uncertainty of the estimation is too high, 
even if the validation could have been done earlier through measurements used for validating 
another quality parameter. Of course, in practice, validation would have been done at that 
time and the number of needed measurements would have been additionally decreased. 
Hence, we have identified an opportunity to reduce laboratory work and focus it to where it 
generates most value. 

 

 
Fig. 9. Needed laboratory analysis measurements (marked with black cell) to maintain requested accuracy of the 

model in three month period with different measurement setups. 
 

 
Fig. 10. Needed laboratory analyzer measurements (marked with black cell) to maintain requested accuracy of 

the model in three month period with different measurement setups. 
 

It would be more effective to use fast, but often inaccurate, on-line measurements to 
estimate the laboratory measurements and to use laboratory analyzer measurements when 
validating the estimation models. The analysis with the presented framework – formal or 



expert derivation of accuracy of quality information required, optimal estimation analysis of 
opportunities to replace labor-intensive measurements by estimates, and dynamic degradation 
analysis to derive frequency of measurements – however, pinpoints critical measurements and 
concentrates more effort on them. In most cases the analysis process itself is of high 
importance: it provides a shared and documented view on performance requirements for the 
quality measurement activities; the accuracy of information, the availability and the costs 
related. Knowledge about the engineered accuracy and reliability of the measurements 
increases the operators trust in the quality parameters, thus supporting and improving decision 
making. 

 
5.  CONCLUSIONS 

 
Measurements are uncertain and estimates of real world derived from them are uncertain. 

Therefore operational decisions are always made under uncertainty. The value of 
measurement information is determined by how much the decisions can be improved based 
on it. 

In this paper we have outlined a framework for determining the value of measurement 
information and designing a measurement information system/policy – what to measure and 
how often - based on the value generated under a defined set of scenarios. The framework in 
its most general form requires that we are able explicitly to define the utility function for each 
decision-making task and the scenarios of external effects on the system, including their 
frequency of occurrence. Admittedly, these are strong – in most cases unrealistic – 
assumptions. Therefore we noted that the result of optimal design of a measurement 
information system can be approximately expressed as constraint on the largest allowable 
uncertainty of measurement information of state, and that such constraint can be obtained 
from human DMs, albeit even this is not intuitive to most DMs.  

We discussed the framework in a practical case of quality management at paper mills. We 
showed a potential for replacing some of the laborious laboratory measurements by estimates 
based on results from an automated laboratory analyzer. However, we also noted that for such 
an estimation to work over a long period of time, occasional laboratory measurements must 
be made to keep the estimate of covariance matrix reliable. When outlining the framework we 
restricted ourselves to direct value generated by the measurements, i.e. how much the 
measurement improves decision making by providing more accurate information about the 
system state. The updating of the covariance matrix is an example of indirect value 
generation: the measurement improves how we derive state information from other 
measurements. The framework will be expanded to tackle the indirect effects as well. 

Decision making is a difficult task, which can be made easier by more accurate and 
focused measurements. The effort of making measurements can be focused when 
measurement of every parameter is not needed. Thus more time and energy can be used for 
making those few measurements and thus also calculated parameters become more accurate. 

Our future research tasks include three distinct topics. One topic is to define formally the 
degradation of measurement information to a priori information, through the Ornstein-
Uhlenbeck process in the case of multivariate Gaussian a priori. The second topic is to 
consider slow degradation of the a priori information, through a Wiener process for the 
multivariate Gaussian. The third topic is to solve for optimal policy via dynamic optimization, 
including realistic cost models for measurement combinations. 
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